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Ground-state symmetry classification for a non-isolated
tunnelling particle

G Benivegna, A Messina and E Paladino
INFM, Gruppo Nazionale del CNR and Centro Universitario del MURST, Istituto di Fisica
dell’Universit̀a degli Studi de Palermo, Via Archirafi 36, 90123 Palermo, Italy

Received 14 November 1995

Abstract. We demonstrate that the ground energy of a two-level system coupled with a bosonic
environment can be labelled with a quantum number related to the total excitation number
operator and independent of the coupling strength. Our approach is exact and is based on
operator methods combining symmetry considerations with general properties of the lowest
energy state. The relevance of our result in connection with the nature of the transition from
the weak to strong coupling regime is briefly discussed.

The influence of environmental modes on tunnelling systems is ubiquitous in physics and
chemistry. In the context of the fundamental problem of ‘molecular structure’ several
authors have investigated the effect of the environment as a possible source of symmetry
breaking [1]. It is, in fact, well known that certain molecules, exhibiting symmetric
configurations, are localized in one of these configurations, instead of being delocalized
as the discrete symmetry of the isolated molecule Hamiltonian would require [2, 3]. For
example, this is the case for chiral molecules [1, 2, 4, 5].

The coupling of such molecules with the coordinates of the gas or condensed phase
in which they are embedded may greatly reduce the energy splitting between the two
delocalized symmetric configurations, leading in this way to localized eigenstates. Thus
the stability of the localized or delocalized states is closely related to the existence of
degeneracy in the ground state of the Hamiltonian that models the system.

These features are shared by the great variety of systems which can be represented as
the interaction of a tunnelling unit, described by an effective one-dimensional symmetric
double-well potential, with its surrounding medium. Ignoring the microscopic details of
the particular physical system under consideration, it is possible to describe many of
these physical [6], chemical [1, 2, 4, 7] and biological [5, 8] systems as a two-state particle
interacting with a set of quantum harmonic oscillators. The correspondent Hamiltonian
model offers a good conceptual starting point to simulate the effects of the environment on
the dynamics of a ‘small object’ [4, 6, 7] and thus it turns out to be very useful in a variety
of contexts such as paraelectric [9] or paramagnetic [10] defects in solids, tunnelling centres
in metallic systems [11] or a two-level atom interacting with a quantized electromagnetic
field [12]. Solving the eigenvalue problem posed by this Hamiltonian is unfortunately
very difficult. Approximate approaches, such as variational [13], perturbative [14, 15]
or variational–perturbative [2, 16], have therefore been worked out to provide reasonable
analytical solutions. A fundamental unsolved issue regarding this system concerns the
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nature of its ground state when the values of the microscopic parameters do not make
any perturbative approach legitimate [17]. In this paper we investigate the possibility of
assigning a parameter-independent symmetry character to the lowest energy level of the
system. It has been shown that, when the two-state particle is coupled to one quantum
harmonic oscillator only, the lowest energy of the composite system is classifiable in terms
of a quantum number related to a symmetry property of the interaction and independent of
the coupling strength [15]. We will give a detailed and rigorous proof that such a result
maintains its validity even when the more complex many-mode problem is investigated.

Our model consists of one non-isolated two-level particle (spin or pseudospin)
interacting withN bosonic modes vis a dipole-like coupling. The correspondent Hamiltonian
model is

H =
N∑

i=1

h̄ωiα
†
i αi +

N∑
i=1

εi(αi + α
†
i )σx + h̄ω0

2
σz. (1)

The two-state unit is characterized by an energy separation ¯hω0 and described by Pauli
operatorsσj , (j = x, y, z). The ith oscillator has a frequencyωi and its quanta are created
or annihilated by the operatorsα†

i andαi , respectively, satisfying the canonical commutation
relations

[αi, αi ′ ] = 0 [αi, α
†
i ′ ] = δii ′ . (2)

The microscopic positive parameterεi measures the coupling strength between the
pseudospin and theith mode of its bosonic environment.

It is immediately verified that the canonical transformation which changes the sign of
αi , α

†
i , σx , σy , leavingσz unmodified, is a symmetry ofH [18, 19]. It is easy to convince

oneself that this transformation can be accomplished by the following Hermitian operator:

P = exp

[
iπ

( N∑
i=1

α
†
i αi + σz

2
+ 1

2

)]
. (3)

The operatorP is thus a constant of motion for our problem. Moreover, it commutes with
the total excitation number operator

∑N
i=1 α

†
i αi + (σz/2) + (1/2) assuming the eigenvalue

+1 (−1) in correspondence to even (odd) eigenvalues of such an operator. For this reason
we refer toP simply as the parity operator. We denote bySw the infinite-dimensional
subspace of all the eigenstates ofP with eigenvaluew.

Exploiting the symmetry property of the Hamiltonian model (1) expressed by [H, P ] = 0
[16], we can reduce exactly the problem of its diagonalization to that of an effective
Hamiltonian operator containing only (new) bosonic variables. Taking advantage of a
treatment recently applied [19] to the Hamiltonian (1), we define the unitary operator

T = exp

{
− i

π

2

[
(σx − 1)

N∑
i=1

α
†
i αi

]}
. (4)

This operator transformsH into H̃ = T †HT as follows,

H̃ =
N∑

i=1

{h̄ωiα
†
i αi + εi(α

†
i + αi)} + h̄ω0

2
σz

N∏
i=1

cos(πα
†
i αi) (5)

and transformsP as

T †PT = −σz. (6)

Since [H̃ , σz] = 0, we may formally get rid of the operatorσz in (5) regarding it as a
c-numberw equal to anyone of its eigenvalues. Thus the search of the common eigenvalues
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of H andP appears to be equivalent to the diagonalization of the following purely bosonic
Hamiltonians (w = ±1):

Hw =
N∑

i=1

{h̄ωiα
†
i αi + εi(α

†
i + αi)} − h̄ω0

2
w

N∏
i=1

cos(πα
†
i αi). (7)

In view of (6), in particular, by solving the eigenvalue problem ofH+1 (H−1) we may
immediately build up all the exact eigenstates ofH belonging to the invariant subspace of
P corresponding to its positive (negative) eigenvalue.

It is well known [15] that the ground-state energyE0 of a system may be recovered
by taking the zero temperature limit of its free energy. Noting that for a physical system
with HamiltonianH, in thermal equilibrium at temperatureT = 1/kβ (k is the Boltzmann
constant), the free energyF is defined as

F = −1/β ln Z (8)

where the partition functionZ is given by

Z = Tr[exp(−βH)] (9)

we may indeed write that (convergence is assumed)

E0 = − lim
T →0

F = − lim
β→∞

{
1

β
ln[Z]

}
. (10)

In general it is a formidable task to show the convergence of the trace of the operator
exp(−βH) and of the free energy forT → 0, in particular when, as in our problem, we
do not know even approximately the solution of the relative eigenvalue problem. Since we
wish to solve our problem on the basis of the representation of the lowest energy level as the
zero temperature limit ofF , we tacitly assume (as is usually done) that such a representation
is meaningful whenever we need it during our demonstration.

We wish to apply equation (10) to the effective bosonic Hamiltonians (7), assuming
the existence of a ground state for bothH+1 andH−1. Denoting byZ+ (Z−) the partition
function relative toH+1 (H−1) (and with Zw the one relative toHw), it is immediate to
verify that the difference between the fundamental level ofH+1, E+

g , and that ofH−1, here
denoted byE−

g , may be written as

E+
g − E−

g = − lim
β→∞

1

β
ln

[
Z+

Z−

]
. (11)

In order to evaluteZw, we introduce appropriate non-normalized density operators
relative to theN -mode problem in the form

ρ(N)
w (β) = exp(βHw) = exp(−β(H0 + H1)) (12)

with

H0 =
N∑

i=1

{h̄ωiα
†
i αi + εi(αi + α

†
i )} (13)

H1 = −w
h̄ω0

2

N∏
i=1

cos(πα
†
i αi). (14)

We may use the Dyson expansion of the operatorρ(N)
w (β) [20], that is written identifying,

in a formal sense only,H1 as a ‘small correction toH0’, but maintaining all the infinitely
many terms in the series expansion because, in general, it is not legitimate to consider
such a series as a perturbative expansion of the operator exp(−β(H0 + H1)). Denoting by
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ρ
(N)

0 (β) the non-normalized density operator relative toH0, we may thus write the following
identity:

ρ(N)
w (β) = ρ

(N)

0 (β) −
∫ β

0
dβ ′ρ(N)

0 (β − β ′)H1ρ
(N)

0 (β ′)

+
∫ β

0
dβ ′

∫ β ′

0
dβ ′′{ρ(N)

0 (β − β ′)H1ρ
(N)

0 (β ′ − β ′′)H1ρ
(N)

0 (β ′′) − · · · . (15)

To get the trace ofρ(N)
w (β), we seek an explicit expression for the trace of the (n + 1)th

term appearing on the right-hand side of equation (15):

(−1)n
∫ β

0
dβ ′

∫ β ′

0
dβ ′′ . . .

∫ β(n−1)

0
dβ(n) Tr[ρ(N)

0 (β − β ′)H1ρ
(N)

0 (β ′ − β ′′)

×H1 . . . ρ
(N)

0 (β(n))]. (16)

Exploiting the fact thatH1 is expressed as a product of single-mode operators and using
a suitable complete set of vectors in the vector spaceV whereH+1 andH−1 are defined,
the trace of the complexN -mode operator appearing in equation (16) may be exactly
transformed into a product ofN traces of single-mode operators, all having the same
mathematical structure. To prove this assertion we transform expression (16) as follows:

ρ
(N)

0 (β − β ′)H1ρ
(N)

0 (β ′ − β ′′)H1 . . . ρ
(N)

0 (β(n))

=
N∏

i=1

{
exp[−(β − β ′)(h̄ωiα

†
i αi + εi(αi + α

†
i ))]

(
−w

h̄ω0

2
cos(πα

†
i αi)

)
× exp[−(β ′ − β ′′)(h̄ωiα

†
i αi + εi(αi + α

†
i ))]

(
−w

h̄ω0

2
cos(πα

†
i αi)

)
. . .

(
−w

h̄ω0

2
cos(πα

†
i αi)

)
exp[−β(n)(h̄ωiα

†
i αi + εi(αi + α

†
i ))]

}
. (17)

By choosing inV an arbitrary basis whose states are tensorial products of independent
single-mode normalized states, we see from equation (17) that the determination of an
explicit form of expression (16) is essentially reduced to the relatively simpler evaluation
of the trace of the following single-mode operator:

[ρ0(β − β ′)h1ρ0(β
′ − β ′′)h1 . . . h1ρ0(β

(n))] (18)

where

ρ0(β) = exp{−βh0} (19)

and

h0 = h̄ωα†α + ε(α + α†) (20)

h1 = −w
h̄ω0

2
cos(πα†α). (21)

It is well known that the unitary displacement operator [14]

D(γ ) = exp[γ (α† − α)] (22)

accomplishes the canonical reduction ofh0 provided that we insertγ = ε/h̄ω. This
circumstance, with the fact thatD(γ ) (unless differently specified, we will henceforth write
D(γ ) in place ofD(ε/h̄ω)) acting on the vacuum state of the field mode generates a coherent
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state, makes the single-mode coherent basis a good choice for the evaluation of the trace
of ρ(1)

w (β) ≡ ρw(β). It is easily seen that

D(γ )ρ0(β)D†(γ ) = exp

(
β

ε2

h̄ω

)
exp(−βh̄ωα†α) (23)

from which we deduce that expression (18) may be written as follows:

[ρ0(β − β ′)h1ρ0(β
′ − β ′′)h1 . . . h1ρ0(β

(n))]

= D†(γ ) exp(−(β − β ′)h̄ωα†α)h̃1 exp(−(β ′ − β ′′)h̄ωα†α)h̃1 . . .

×h̃1 exp(−β(n)h̄ωα†α)D(γ ) exp

(
β

ε2

h̄ω

)
(24)

where

h̃1 = D(γ )h1D
†(γ ). (25)

Noting that

α cos(πα†α) = − cos(πα†α)α (26)

it is not difficult to prove thath1 satisfies the following property:

h1D
†(γ ) = D(γ )h1. (27)

With the help of equation (27), the operator expressed by equation (24) becomes

[ρ0(β − β ′)h1ρ0(β
′ − β ′′)h1 . . . h1ρ0(β

(n))]

=
(

−w
h̄ω0

2

)n

exp

(
β

ε2

h̄ω

)
{D†(γ ) exp(−(β − β ′)h̄ωα†α)D(2γ )

× exp(−(β ′ − β ′′)h̄ωα†α)D†(2γ ) . . . D†(2γ ) exp(−β(n)h̄ωα†α)D(γ )} (28)

if n is an even natural number, whereas it assumes the form

[ρ0(β − β ′)h1ρ0(β
′ − β ′′)h1 . . . h1ρ0(β

(n))]

=
(

−w
h̄ω0

2

)n

exp

(
β

ε2

h̄ω

)
{D†(γ ) exp(−(β − β ′)h̄ωα†α) cos(πα†α)D†(2γ )

× exp(−(β ′ − β ′′)h̄ωα†α)D(2γ ) . . . D†(2γ ) exp(−β(n)h̄ωα†α)D(γ )} (29)

whenn is an odd natural number. Unfortunately, both operator expressions (28) and (29)
still appear too involved for an estimate of their mean values on a single-mode coherent
state. In order to simplify these expressions we should get rid of most of the operators
exp(β(r)h̄ωα†α) in equations (28) and (29). We can use the well known tranformation
property [21],

exp(xα†α)F (α, α†) exp(−xα†α) = F(α e−x, α† ex) (30)

with x ∈ C, which permits us to put expressions (28) and (29) into the more convenient
form(

−w
h̄ω0

2

)n

exp

(
β

ε2

h̄ω

)
×{D†(γ ) exp(−λα†α) exp(a1α

† − b1α) . . . exp(anα
† − bnα)D(γ )} (31)

where{ai} and{bi} are real coefficients depending onβ ′, β ′′, . . . , β(n) and on the parameters
present in the Hamiltonian modelh = h0+h1. Also, as far as the coefficientλ is concerned,
we haveλ = βh̄ω if n is even andλ = βh̄ω + iπ if n is odd.
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The product of then exponential operators
∏n

i=1 exp(aiα
†−biα) may be easily converted

into a single exponential operator applying (n − 1) times the Glauber identity [22]. This
way of proceeding yields the following result,

[ρ0(β − β ′)h1ρ0(β
′ − β ′′)h1 . . . h1ρ0(β

(n))]

=
(

−w
h̄ω0

2

)n

exp

(
β

ε2

h̄ω

)
Cn(β

′, β ′′, . . . , β(n), ε, h̄ω)

×D†(γ ) exp(−λα†α) exp

(
2

ε

h̄ω
(f α† − gα)

)
D(γ ) (32)

whereCn(β
′, β ′′, . . . , β(n), ε, h̄ω) is a positivec-number andf andg are real coefficients

whose exact expressions are given as

f =
n∑

k=1

(−1)k+n+1 exp(β(k)h̄ω) (33)

g =
n∑

k=1

(−1)k+n+1 exp(−β(k)h̄ω). (34)

As a consequence of the operator identity expressed by equation (32), we can now evaluate
the trace of the operator defined by equation (18) using the coherent-states basis. Writing the
operator exp(2(ε/h̄ω)(f α†−gα)) in its normal form and using once more the transformation
property given in equation (30), we get

Tr

[
D†(γ ) exp(−λα†α) exp

(
2

ε

h̄ω
(f α† − gα)

)
D(γ )

]
=

∫
d2δ

π
〈δ|D†(γ ) exp(−λα†α) exp

(
2

ε

h̄ω
(f α† − gα)

)
D(γ )|δ〉

=
∫

d2δ

π
exp(x + yδ + zδ∗)

〈
ε

h̄ω
+ δ

∣∣∣∣ exp(−λα†α)

∣∣∣∣ ε

h̄ω
+ δ

〉
(35)

where the integration domain is the whole complex plane. The real coefficientsx, y, z

depend in a complicated form onf , g andβ and their explicit dependence is not relevant
for our purposes. It is easy to evaluate the mean value appearing in the integrand in the
last line of equating (35) obtaining [23]∫

d2δ

π
exp(x + yδ + zδ∗)

〈
ε

h̄ω
+ δ

∣∣∣∣ exp(−λα†α)

∣∣∣∣ ε

h̄ω
+ δ

〉
=

∫
d2δ

π
exp(W + X̄δ + Ȳ δ∗ − Z̄|δ|2) = 1

Z̄
exp(W) exp

(
X̄Ȳ

Z̄

)
(36)

where W , X̄, Ȳ , Z̄ are real functions off , g and β. We give here, for example, the
expression forZ̄,

Z̄ = 1 + (−1)n+1 exp(−βh̄ω) (37)

which shows thatZ̄ > 0 but, in contrast, we leave undefined the more intricate functions
W , X̄, Ȳ as we did forx, y, z. Putting together equation (32) and (36) finally yields

Tr[ρ0(β − β ′)h1ρ0(β
′ − β ′′)h1 . . . h1ρ0(β

(n))]

=
(

−w
h̄ω0

2

)n

exp

(
β

ε2

h̄ω

)
Fn(β, β ′, β ′′, . . . , β(n), ε, ω) (38)



Ground-state symmetry classification 2491

where the functionFn(β, β ′, β ′′, . . . , β(n), ε, ω) is, by its construction, positive. Now
reconsidering equation (17) and taking the trace of both sides, we may easily take advantage
of the result expressed by equation (38), relative to a single-mode problem, in theN -mode
correspondent problem, obtaining

Tr[ρ(N)

0 (β − β ′)H1ρ
(N)

0 (β ′ − β ′′)H1 . . . H1ρ
(N)

0 (β(n))]

=
(

−w
h̄ω0

2

)n

exp

(
β

N∑
i=1

ε2
i

h̄ωi

) N∏
i=1

Fn(β, β ′, β ′′, . . . , β(n), εi, ωi). (39)

Evaluating the integrals with respect toβ ′, β ′′, . . . , β(n) according to definition (17), after
a formal summation of the Dyson series (15), we finally achieve the following expression
for the partition functionZw:

Zw = exp

(
β

N∑
i=1

ε2
i

h̄ωi

) ∞∑
n=0

(
w

h̄ω0

2

)n

Bn(β, {εi}, {ωi}) (40)

whereBn(β, {εi}, {ωi}) is positive for anyn. Despite the insurmountable difficulty in getting
explicit expressions for the coefficientsBn(β, {εi}, {ωi}) for every n, we can, however,
succeed in drawing interesting physical conclusions based only on the knowledge of the
sign of all these coefficients. Returning to equation (11), we, in fact, deduce that

E+
g − E−

g = − lim
β→∞

{
1

β
ln

[ ∑∞
n=0(h̄ω0/2)nBn(β, {εi}, {ωi})∑∞

n=0(−h̄ω0/2)nBn(β, {εi}, {ωi})
]}

(41)

and, since ∑∞
n=0(h̄ω0/2)nBn(β, {εi}, {ωi})∑∞

n=0(−h̄ω0/2)nBn(β, {εi}, {ωi}) > 1 (42)

we arrive at the conclusion

E+
g − E−

g 6 0. (43)

BecauseEg = min(E+
g , E−

g ), we may elucidate the physical meaning of equation (43)
by saying that, in consequence of its validity in the whole parameter space, a ground state of
the interaction between the two-state particle and its environment simulated byN quantum
oscillators always belongs to the positive-parity subspace of the total Hilbert space of the
system. This amounts to excluding the possibility of crossing between the lowest energy
eigenstates ofH evaluated insideS+1 andS−1, respectively. The absence of parity crossing
in the ground state of the combined particle–bosonic environment interaction legitimates
the search insideS+1 for a ground state of the Hamiltonian model (1).

We wish to conclude by adding some final remarks on the content of this paper. Our
approach is based only on operator methods combining symmetry considerations and general
properties of the ground state. A distinctive feature to point out is the general validity of
the result that we have obtained. In fact, it has been deduced rigorously without assigning
a specific dispersion law to the bosonic environment and without fixing a particular mode
dependence of the coupling constants. This means that they are valid over the whole range
of the characteristic parameters appearing in the Hamiltonian. Another interesting feature is
the fact that the mathematical technique employed to achieve the result is quite independent
from the resolution of the eigenvalue problem ofH .

Our result is of relevance in the context of the problem concerning the nature of the
transition connecting the nearly-free and the self-trapped regimes. Besides its theoretical
intrinsic interest, this fact has experimental significance too, considering that it has been
recently reported that the microscopic parameters of some systems represented by (1) can
be tuned using macroscopic external parameters [24].
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